Finding treatments for neurodegenerative diseases

Anne Rosser
Cardiff University Brain Repair Group
Cardiff Neurosciences and Mental Health Institute

HD as a model disorder for identifying new treatments

Loss of medium spiny neurons

Genetics of Huntington's disease

- Normal population 17-26
- ≥40 disease range
- ≥ 36 ≤39 reduced penetrance
- ≥ 27 ≤35 intermediate allele

Toxic gain of function

Targeted therapies - based on knowledge of specific underlying pathophysiology

Non-targeted therapies - may be based on reasoning, but not necessarily specific to the disease

Targeted therapy: silencing the mutant allele

From: Progress and Challenges in RNA Interference Therapy for Huntington Disease

Scott Harper, Arch Neurol. 2009;66(8):933-938. doi:10.1001/archneurol.2009.180

Table. Preclinical Huntington Disease RNA Interference Therapy Studies in Rodent Models

Source	Animal Model	Inhibitory RNA Used	Delivery Method	Species Specificity	Correction	
					Histological	Motor
Harper et al,10 2005	N171-82Q	shRNA	AAV1	Human	Yes	Rotarod, gait
Rodriguez-Lebron et al,11 2005	R6/1	shRNA	AAV5	Human	Yes	Clasping
Wang et al, ¹² 2005	R6/2	siRNA	Liposome	Human	Yes	Rotarod, clasping ^a
Machida et al, 13 2006	HD190QG ^b	shRNA	AAV5	Human ^c	Yes	ND
DiFiglia et al,14 2007	AAV-Htt100Q ^d	siRNA	Cholesterol ^c	Human	Yes	Clasping, bean
Huang et al, 15 2007	R6/2 and Ad-HttQ103GFP ^d	shRNA	Adenovirus	Human	Yes	ND
Franich et al,16 2008	Rat AAV-HD70 ^d	shRNA	AAV1	Human	Yes	Forepaw use
McBride et al, ¹⁷ 2008	CAG140	shRNA, miRNA	AAV1	Human, mouse	Safety study	Safety study
Drouet et al, ¹⁸ 2009	Mouse and rat lenti-htt171-82Q and lenti-htt853-82Q ^d	shRNA	Lentivirus	Human, mouse, rat	Yes	ND
Boudreau et al, ¹⁹ 2009	N171-82Q	miRNA	AAV1	Human, mouse	Yes	Rotarod

Abbreviations: AAV, adeno-associated virus; miRNA, microRNA shuttle; ND, not determined; shRNA, short hairpin RNA; siRNA, small interfering RNA.

Preclinical Huntington Disease RNA Interference Therapy Studies in Rodent Models

^aThis study also demonstrated improved lifespan.

^bThe HD190QG model produces a truncated mutant human *HTT*—enhanced green fluorescent protein fusion protein. The shRNAs in this study targeted the enhanced green fluorescent protein portion of the transcript, resulting in coincident *HTT* knockdown.

^cThe siRNAs were cholesterol conjugated and codelivered with AAV1/8 vectors expressing mutant human huntingtin fragments.

dIndicates nontransgenic animals in which viral vectors were used to deliver mutant human HTT to rodent brains.

Challenges associated with gene knock-down

Indiscriminate knock down of mutant and normal allele:

- Evidence of tolerance to general lowering huntingtin
- Allele-specific strategies

Delivery:

- Intracerebral
- Repeated injections development of indwelling delivery systems
- Potential of delivery through transplantation of modified stem cells

Long term side effects not determined

Targeted therapy: Histone deacetylase (HDAC) inhibitors

Evidence that histone acetlylation important in HD

In the test tube, the presence of Htt decreases histone acetlyation - effect is revered by HDAC inhibitors

In animal models (fruit fly and mice) HDAC inhibitors reversed histone deacetylation and improved motor function and survival

Many HDACs already approved for clinical use

Sienna Biotech trial

The agent - SIRT1 inhibitor

Sirt1 is a deacetylaser

Inhibiting Sirt1 seems to modify acetylation of Htt causing it to be cleared more rapidly than the normal protein.

Transgenic mice- associated with reduced symptoms and longer lifespan.

Phase II trial - Awaiting results

Targeted therapy: cell replacement

Developing neurons in the embryonic brain

Efferents

Afferents

Stereotaxic implantation Under anaesthetic

Cell survival

Degree of circuit reconstruction

Functional improvement

Does it work in animal models?

DARPP-32

araft-ha

0.5mv

20m

graft-host Connections

Inject excitoxin into striatum

Control

Graft fEPSP

Behavioural recovery

Graft Function

Bachoud-Lévi et al 2000 Lancet

Contract number HEALTH-F4-2013-

602245

Repair-HD

- EU funded series of work packages
- 4 year program
- Coordinated Rosser and Dunnett
- Partners in Cardiff, Manchester, Edinburgh, `, Milan and Münster

To establish all the components necessary to take human pluripotent stem cell derived neuronal cells through to the point of 'first-in-man' clinical trial in Huntington's disease (HD).

602245

EuroStemCell

"Overall, the collective collaborative activities of the consortium are laying the groundwork for taking stem cell technology to the clinic - in the form of well characterised cell lines and a solid preclinical skills and knowledge base."

Elena Catteneo

Non-targeted therapy: Exercise

Animal studies - environmental enrichment

Retrospective study of lifestyle

Aerobic exercise in PD and DAT

Active-HD

Supporting Engagement in Activities in people with Huntington's Disease

www.activehd.co.uk

South East Wales Trials Unit

Uned Ymchwil De-ddwyrain Cymru

The importance of collaboration

EHDN: www.euro-hd.net

Network of clinicians and scientists

Information sharing and collaboration

Platform for clinical trials

REGISTRY - web based longitudinal database and biobank

Working groups

Discovery of the gene is the starting point

Improved assessment tools

Objective cognitive and behavioural testing

Biomarkers

Sarah Tabrizi